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The Internet of Things (IoT) has become increasingly prevalent in various aspects of our lives,

Internet of Things enabling billions of devices to connect and communicate seamlessly. However, the intricate

nature of IoT connections and device vulnerabilities exposes the devices to security threats.

To address the security challenges, we propose a proactive defense framework that leverages

a model-based approach for security analysis and facilitates the defense strategies. Our proposed

approach incorporates proactive defense mechanisms that combine Moving Target Defense

Diversity techniques with cyber deception. The proposed approach involves the use of a decoy nodes as a
deception technique and operating system based diversity as a moving target defense strategy to
change the attack surface area of IoT networks. Additionally, we introduce a technique known as
Important Measure-based Operating System Diversity to reduce defense cost. The effectiveness
of the defense mechanisms was evaluated by using a graphical security model in a Software
Defined Networking-based IoT network. Simulation results demonstrate the effectiveness of our
approach in mitigating the impact of attacks while maintaining high performance levels in IoT
networks.

Moving Target Defense

Graphical Security Models

1. Introduction

The Internet of Things (IoT) is an emerging paradigm due to its ability to provide intelligent connectivity and
applications across various domains. It enables the connection of numerous objects with different service requirements
in distributed networks, allowing for ubiquitous connectivity. However, this scalability also leads to increased
complexity in management and poses challenges in ensuring cybersecurity [58]. To address these challenges, Software
Defined Networking (SDN) presents a novel approach by decoupling the control plane and data plane in IoT networks
[33]. This provides the SDN controller with a global network view, allowing for flexible traffic engineering and
improved IoT security. Despite SDN’s ability to manage IoT networks flexibly and enhance network and data security,
its architecture also introduces vulnerabilities that increases the overall risk in the environment [24]. One such
vulnerability arises from the fact that legacy and limited resource devices cannot be managed by the SDN controller,
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as they operate outside of the SDN architecture. Some IoT devices, especially those with limited processing power,
memory, or energy resources, may not be suitable for direct management through SDN. SDN requires additional
software components and overhead, which may be impractical or inefficient for resource-constrained devices. The
nature of IoT devices means that data is constantly being transmitted, processed and collected in the cloud, often without
any encryption. If a hacker was able to access a medical IoT device, they could use it to manipulate information and
transmit false signals. If a healthcare practitioner acts on one of these signals then it could have a significant impact on
the patient’s treatment. Research conducted by the FDA [26] found that St Jude Medical’s implantable cardiac devices
have vulnerabilities. If hackers were able to gain access then they could deplete the battery or administer incorrect
pacing or shocks. Another example given by the Chief Security Strategist at the PRPL Foundation was about the
Owlet WiFi baby heart monitors transmitting unencrypted traffic to the base station without any authentication. This
could leave the devices vulnerable to any eavesdropping attacks. The lack of necessary security protocols can make it
easy for attackers to infect IoT devices, form botnets, and launch DDoS attacks. Moreover, network unavailability [57]
can have catastrophic consequences in certain situations since numerous IoT applications rely on real-time inputs.

Traditional network configurations are often deterministic, static, and uniform, placing defenders in a passive position
and making countermeasures costly and short-lived. In recent times, the Moving Target Defense (MTD) [60]
cybersecurity technique has gained prominence because it can be used to reduce cyber attacks by introducing
uncertainty and disrupting the Cyber Kill Chain (CKC) [43]. Cyber deception techniques [65] have proven effective by
misleading attackers with false information, decoys and honeypots [21]. Existing solutions for IoT network security [55]
have limitations; e.g., utilizing a single technology approach that is focused on intrusion detection [61] or MTD [52].
Combining defense mechanisms is often overlooked as a means to enhance cybersecurity and to limit risks associated
with one of the defense mechanisms being compromised. Current approaches may not deter sophisticated attackers
who can monitor traffic passively and pinpoint real attack targets. Frequent adaptations such as Internet Protocol (IP)
address shuffling [69] or Virtual Machine (VM) migration [5] increase costs, response delay [64], and reduce service
quality. Therefore, balancing proactive techniques for cybersecurity with performance and cost is essential.

This paper employs a diversity-based MTD technique that enhances security by periodically changing system
components to confront attackers with evolving vulnerabilities. The novel and innovative technique introduces effective
security metrics, including Attack Cost (AC), Return on Attack (RoA), and Risk (R), from both attacker and
network defense perspectives. To address scalability associated with graphical security models (GSMs), we adopt the
Hierarchical Attack Representation Model (HARM) [37]. The aim of the proposed technique is to proactively defend
IoT network using a combination of cyber deception and MTD techniques within an SDN-based IoT framework. While
MTD can be implemented traditionally using hardware-based middleboxes, this paper explores an approach tailored
to SDN, offering programmability and controllability. The contributions of this paper include:

e Development of an integrated proactive cybersecurity technique for an IoT network by implementing the
diversity-based MTD technique on a network that comprises both decoy and real nodes.

e Reduced cost to enhance IoT security.

o The application of Important Measures (IMs) on various Network Centrality Measure (NCM) properties to assess
MTD technique effectiveness with a focus on IoT networks.

e Comprehensively analyzing security and performance metrics that include attack paths, AC, system risk, RoA,
and Extra Operational Cost (EOC).

e Development of a framework and advanced GSM modeling technique that can be used to evaluate cybersecurity
techniques.

e Testing and validation of the proposed cybersecurity technique under diverse scenarios, ensuring robustness and
real-world applicability.

The rest of this paper is organized as follows. Section 2 provides a brief overview of the related work. Section 3 gives
an overview of the proposed framework and network model. Section 4 includes the design of our proposed defense
mechanism. Section 5 shows simulation results and analyses the results observed. Section 6 suggests future research
directions and provides the conclusion.
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2. Related Work

Due to the limited resources and heterogeneous nature of end-devices, as well as the emergence of novel protocols and
networking technologies, providing security in IoT networks poses a significant challenge [17]. However, the literature
shows that research in IoT security is rapidly progressing [35], with intrusion prevention, detection, and mitigation
[14] being the primary solutions to defend against security attacks [19]. Proactive defense technologies, such as those
employing SDN, are gaining more attention due to their flexibility and ability to mitigate attacks against IoT devices
[14],[48]. Therefore, we provide a brief discussion of related techniques, including MTD and cyber deception, along
with a review of diversity based MTD techniques for cloud and IoT security in this section.

Cyber Deception and MTD approaches for IoT. MTD is a proactive defense mechanism that aims to increase the
dynamic nature of a system to deter attacks. It achieves this by employing techniques such as shuffling, diversity, and
redundancy [4]. Shuffling techniques (e.g., changing IP addresses; migrating virtual machines), are used to confuse the
attackers during the reconnaissance phase. This increases the attack difficulty and efforts, and invalidates the previously
acquired system intelligence [21]. The authors of [75] conducted a study on MTD strategies and analysed how these
techniques affect the diversity, unpredictability, and vulnerability of a system when defending against cyber-attacks.
They found that applying various MTD approaches could assist in reducing the risk of reconnaissance attacks, computer
worm assaults, distributed denial-of-service attacks, and code injection attacks. The reason MTD is effective is because
it introduces diversity and random changes to networks and systems, which might make the knowledge that attackers
gathered during the reconnaissance phase invalid. [18] states that three MTD subfields were studied: theory, strategy,
and evaluation. The selection of an MTD technique and how it will be applied depends on when it is appropriate to
apply the technique but the cost factor was not taken into consideration. In [46] it was suggested the technique Micro
One Time Address be used to anonymize packet flows for IoT devices. This method involves altering the structure of
IPv4 packets, but it requires reconfiguration of all routers due to the change in IP header. In [54] a simpler approach
was proposed for changing the addresses of IoT devices by utilizing network-wide address shuffling. This involves
sending a multicast message to prompt devices to shuffle their addresses. Additionally, in [6] the authors introduced a
model to prevent attackers from discovering device addresses in IoT networks. This method involves transmitting data
through a dedicated MTD channel with the use of fake addresses. The MTD technique, developed by the authors of
[41], is a method for pro-actively altering host IP addresses. [2] introduced the concept of Random Route Mutation
(RRM) to determine an optimal randomized path between source and target. Meanwhile, [8] developed a technique
called Shuffle, which employs IP randomization to counter Hit-List worm attacks. [71] suggested a hypervisor-level
end-to-end defense mechanism to safeguard VMs in a cloud data center. The authors of [73] proposed a MTD approach
to address the challenges associated with co-residency in a virtualized environment. The impact of MTD techniques
on security was evaluated by [37] using a formal method and also analysed how each technique affected security. In
[5]1,[3], a combination of two MTD techniques were proposed; shuffle and diversity, which minimized attacks on the
cloud systems. Based on the results obtained, it was concluded that combining both shuffle and diversity can help to
improve security metrics. In [4] the authors devised the combination of shuffling and a redundancy technique, where
shuffling improves the security of cloud networks and systems and redundancy helps to improve the reliability of the
cloud.

In [49], an SDN-based architecture was implemented, which enables cyber deception on legacy IP-based IoT devices.
The authors achieved this by using SDN-enabled honeypots to collect attack information and communicating with
SDN controllers to update flow rules on switches to reduce attack traffic. Although cyber deception has proven
effective in disrupting early stages of the CKC, the complexity of honeypots and programming in large systems
often leads to reduced attacker intelligence and attention span [68]. In [34] a honeypot-like approach using fake and
real gateways was proposed that utilized sensors to identify cyber-attacks and to deceive attackers. [67] presented
a game theoretic approach that minimized the extra operations required by Markov gaming while dominating the
game based on a Zero-determinant (ZD) strategy. Other studies, such as [7] and [23], have used honeypots to mitigate
DDoS attacks launched from IoT devices and to identify DDoS attacks and bot malware using a ZigBee honeypot.
The high cost of implementing and maintaining high-interaction honeypots limits their scalability for gaining in-
depth information about attacks and attacker behaviour [62]. To address these challenges, recent developments in IoT
environments have seen the integration of visualization and automation technologies to facilitate decoy deployment
and updates. However, attackers can still identify decoys based on longer response times, and it remains a challenge to
develop deception techniques in production environments while ensuring continuous network monitoring and safe
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deployment without compromising system integrity [40]. In contrast to traditional deception-based methods, the
proposed approach involves flexible adjustments to network properties to disguise production systems and decoys,
saving defense resources.

Diversity-based approaches. Diversity-based MTD approaches have been applied to traditional networks, cyber
physical systems, and the cloud. According to [21], attack complexity can be increased by the use of diversity-based
MTD techniques. This is achieved through the incorporation of multiple system components (such as software and
Operating Systems (OS)) that offer equivalent functionalities. Another study in [39] presented a Diversity MTD
approach for virtual servers to improve network and service resilience. They achieved this by modifying the OS,
visualization components, web servers, and application software. The researchers then assessed the effectiveness of
their technique by analysing the probability of successful attacks. In [11], the authors developed a different Diversity
MTD approach that involves randomly altering program variants during runtime. Their proposed approach divides
a large program into smaller sections (cells or tasks) that can be executed using multiple variants with the same
functionality. Different randomization techniques have been used to automatically generate diversity [63]. Those
techniques can be applied to improve the network diversity measured using their metric model. The metrics identified
provides a quantitative evaluation method. The formalization of diversity among redundant subsystems in smart grids
is presented in [25]. Apart from design and generated diversity, opportunistic diversity, which already exists among
various software systems, has also been utilized in recent research. For instance, [28] evaluates the feasibility of using
OS diversity for intrusion tolerance. In [72] the authors have adapted biodiversity metrics to networks and extended
the diversity metrics to the network level. While these diversity techniques serve as the basis for their research,
they do not offer a systematic solution for enhancing network diversity. By modifying system components, diversity
MTD techniques can complicate attacks and make them more challenging. This is because changing a component
can introduce a fresh set of vulnerabilities, rendering the attacker’s existing knowledge of vulnerabilities obsolete.
As a result, attackers may need to invest more time, effort, and money to develop new techniques for exploiting
the newly introduced vulnerabilities. Diversity-based techniques provide functionally equivalent applications with
different implementations, such as code diversification [50] and instruction set randomization [44]. Redundancy-based
techniques create replicas of applications [74] or services [42] with the same functionality to increase resilience to
attacks. [15] used the network diversity optimization for resilience against unknown attacks in cloud environment and
[20] used formal modeling network diversity ( as a security metric for evaluating networks robustness against zero
day attack) and [16] used OS diversity for intrusion detection in SCADA environment. Hybrid techniques combine
multiple MTD mechanisms to work in cooperation. However, frequent MTD mutations can negatively impact system
performance, and additional deployments may not be suitable for IoT devices due to their limited computational
capabilities. Nevertheless, a proposed lightweight framework can be easily deployed on top of an SDN controller and
avoid unnecessary defense costs while decreasing overhead. Table 1 provides a comparative summary of well-known
cybersecurity techniques in the literature. The cybersecurity techniques are compared based on their application of
Moving Target Defense (MTD), Deception, and Intrusion Detection/Prevention techniques.

SDN for IoT. SDN technologies have attracted attention in the context of managing IoT traffic flows due to its
ability to be easily programmed and to optimize network performance. By employing an SDN-based architecture and
network function virtualization, challenges faced in IoT environments can be effectively addressed, and devices can be
made interoperable. In one specific study [47], the focus was on countering man-in-the-middle attacks that target the
OpenFlow control channels, which are used in SDN. The proposed solution utilized a Bloom filter, a probabilistic data
structure, to detect and mitigate attacks. Additionally, by implementing SDN-based networking in an IoT environment,
traffic routing and energy consumption can be optimized, leading to more efficient network operation. Another study
[66] introduced a routing protocol for SDN-based sensor networks that enables multihop communication. This protocol
utilizes a centralized control approach, where an SDN controller manages the network. This centralized control allows
for efficient multitasking in the sensor networks, facilitating the execution of multiple sensing tasks simultaneously
[70]. However, a remaining challenge in this context is the design of an optimal management strategy for the sensor
nodes. SDN solutions [27] have been used in various IoT networks for different purposes, including managing data
flow between IoT devices, reducing data exchange in wireless sensor networks, managing wireless access networks,
optimizing mobile networks [13], enabling smart urban sensing, and aiding in topology reconfiguration decision
making in wireless sensor networks [22]. [12] conducted a comprehensive survey to categorize the different techniques
for detecting and mitigating DDoS attacks using SDN. They also presented ProDefense, a proactive DDoS Framework
based on SDN, that can detect and mitigate DDoS attacks in a large-scale network. [76] proposed an SDN-enabled
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defense framework by combining MTD and cyber deception to create fake information to confuse attackers. Qin et
al. [56] proposed a software-defined approach for IoT that dynamically achieves varying levels of quality in a diverse
wireless network. [45] examined the possibility of gradually implementing SDN-based solutions alongside the current
BGP-based Internet infrastructure.

Graphical Security Modelling for IoT. A graphical security model used to represent and analyze system vulner-
abilities in a graphical format. HARM is a two-layer model that combines Attack Graphs (AG) and Attack Trees
(AT) to capture network reachability and vulnerability information. According to [38], graphical security models
provide an efficient way to evaluate system vulnerabilities by applying defense strategies. An AG displays possible
attack sequences that can reach the target based on the vulnerability information and links between devices. However,
AG scalability is limited as the network size grows. An AT is another graphical security model that systematically
presents potential attacks in the network, but it also suffers from scalability issues. To address this problem [37]
introduced a two-layer HARM that combines graphical security models on different layers. The upper layer (AGs)
captures the network reachability information, while the lower layer (ATs) represents the vulnerability information
of each node in the network. The HARM layers were constructed independently of each other, which reduced the
computational complexity of calculating and evaluating the model compared to single-layered graphical security
models. [37] evaluated MTD techniques in a virtualized system based on HARM by using a risk metric. [31] developed
a framework using HARM to automate security analysis of IoT networks, by evaluating defense mechanisms at both
device and network levels based on cost and impact metrics. Several studies have utilized a risk-based security approach
to evaluate the effectiveness of defense mechanisms in IoT environments. The authors of [31] studied the effectiveness
of address space layout randomization (ASLR) and assessed its performance through the utilization of HARM. In [59]
a framework was proposed that adopts a game-theoretic approach and context-aware techniques to assess the expected
risk and potential benefits in eHealth IoT domains and also an adaptive security management scheme considers security
metrics to address the challenges of securing eHealth IoT environments. [58] proposes a method to estimate risk metrics
from an economic perspective and devises an optimal security resource allocation plan for an IoT network composed
of mobile nodes.

The studies discussed earlier focused on either MTD or cyber deception. [30] proposes using both shuffling based
MTD and cyber deception, but none of the MTD-based approaches for IoT considered OS diversity-based techniques
integrated with a defense model to effectively halt attacks that use compromised IoT devices as steppingstones.
Additionally, a review of the literature was unable to identify a proposal to develop an integrated defense system that
combines both MTD and defensive deception techniques. When decoys are deployed, MTD using network diversity not
only confuses attackers by changing the OS among IoT devices but also makes the network more complicated and steers
attackers away from actual IoT devices. This can increase the cost and effort required for an attack while decreasing the
likelihood of genuine IoT devices being compromised. Therefore, we propose a proactive defense system that integrates
both cyber deception and MTD techniques to prevent intrusions and effectively mitigate the negative impact of attackers
before they can infiltrate an IoT system. There is work on combing honeypots with diversity, however, when compared
with [10], the novelty of our proposal is that we use recently developed deception technologies and OS diversity and
aim to explore the effectiveness of this approach and trade-off between the operational cost and diversity of both decoys
and real devices for IoT networks. Table 2 summarizes state-of-the-art, outlining methodologies proposed, simulation
scenarios, attack models, and evaluation metrics.

3. Proposed Framework and System Model

In this section, we describe the proposed framework, the network model with an example SDN-based IoT environment,
the attacker’s goals and abilities, the strategies to deploy our defense mechanism and the security parameters used for
our research to evaluate performance.

3.1. Comparison with related works

In [30], the authors proposed a cyber security defense mechanism that was based on shuffling MTD and cyber
deception. This work provided motivation to explore a proactive defense technique that proposes use of OS diversity.
The earlier work reported in [10] includes honeypots with diversity and the outcomes of the research highlight the
benefits of combining cyber security techniques. In [16], the authors employed diverse operating systems to create
an intrusion detection system for SCADA systems. The proposed cyber security framework is novel and innovative
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because we propose to utilize the combination of OS diversity and deception techniques to implement a more effective
defense mechanism against cyber attacks for IoT networks. The combination of cyber security defense techniques
utilized in the proposed model is new and best of our knowledge, such a combination of techniques has not been found
in the literature.

Tables 1 and 2 provides a comparison of related works found in the literature. The research works explore the use
of a combination of MTD and deception applications that can be used to carry out intrusion detection and prevention.
The simulation scenarios used in these works include SCADA environments [16], cloud networking devices and IoT
networks. A range of evaluation metrics have been employed to measure the effectiveness of the approach being
proposed. The novel approach presented here provides enhanced intrusion prevention by employing OS diversity
(MTD) and dynamic decoys (Deception) in a smart SDN enabled defense framework to confuse the attackers by
presenting fake information.

Regarding the evaluation metrics, [16] used Detection Rate, False Positive Rate, System Overhead and focused on the
performance of a security system in terms of detection accuracy, the reduction of false positives, and the impact on
system resources. [31] employed ASP, MTTC, Attack Impact to address the broader cyber security concerns related to
the management of attack surfaces, response times, and the severity of security incidents. [10] used Deception Rate,
Detection Rate, Cost Per Honeypot Type which are specific to deception-based security strategies, such as honeypots,
and evaluates the effectiveness, visibility, and cost-effectiveness of these strategies. [15] employed D1 (Gain Based on
Number of Exploits), D2 (Gain Based on Shortest Path) and D3 (Gain Based on Number of variable) and focused on
reducing the number of successful exploits to improve the security while reducing the number of variables or factors
that can be manipulated by the attackers. [20] used Worm propagation and attack success rate to assess the speed and
reach of an attack, and measure the effectiveness of individual attacks. [76] used Survival rate and Packet loss rate
and focused on the percentage of successful deliveries, while the packet loss rate quantifies the extent of data loss.
[30] MTTC focuses on attack response times, MTTSF assesses the reliability of security controls, and defense cost
measures the financial investment in security measures. In our paper, we have used Attack Cost and System Risk that
focus on assessing the exploitation efforts and vulnerability of an organization’s security posture. ROA is a financial
metric used to evaluate the probability and profitability of the attack. PDR is a performance metric used to measure
the successful delivery of data packets in a network, reflecting the quality and reliability of data transmission.

Table 1
Comparison Among State-of-the-Art Based on MTD
and IDS/IPS.
Paper Applications of | Applications | Intrusion
MTD of Detection/Prevention
Deception
1 N/A Decoy farm | Both
9 N/A Honeypots Both
32 N/A N/A Intrusion prevention
15 Network diversity N/A N/A
20 Dynamic  network | N/A Intrusion detection
diversity
31 N/A N/A Intrusion detection
30 Network  topology | Decoy Both
shuffling, IP address
shuffling
76 Hybrid Honeypot Intrusion detection
16 OS diversity N/A Intrusion detection
10 Software Diversity Honeypot Intrusion detection
Our OS diversity Decoys Intrusion prevention

3.2. Proposed Framework

The proposed framework presented in Figure 1 comprises of five stages to implement and evaluate the effectiveness

of the operating system diversity technique:
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Table 2

Comparison Among State-of-the-Art Based on Methodology

and Attack Model.

Paper Proposed Methodology Simulation Sce- | Attack Model Evaluation Metrics
nario
[1] Induction of threat hunting in SCADA SCADA Hatman Threat Detection, vali-
environment Malware, HTTP dation
Dos, Headless
HTTP Server
[9] Game theory based honeypot allocation | Virtualized net- | Attack graph Game-theoretic metrics
algorithm over an attack graph work
[32] SQL Database Architecture design based | SQL database Statistical anal- | Attack vector,
on OS vulnerabilities ysis access complex-
ity,authentication,
vulnerability integrity
[15] Optimization for resilience against un- | Cisco cloud Resources D1, D2, D3
known attacks by using heuristic and | data centre and | attack graph
optimization algorithm Openstack
[20] Formal modeling network diversity as a | Stuxnet and | Zero day attack | Worm propagation, suc-
security metric for evaluating networks | SCADA cess rate of attack
robustness against zero day attacks
[31] Graphical security model SHARPE based | Zigbee  based | N/A ASP, MTTC, Attack
security assessment Smart home Impact
scenario
[30] An SDN-based network topology shuf- | Smart hospital APT MTTC, MTTSF, De-
fling and optimal honeypot placement fense Cost
defense strategy
[76] An SDN-Enabled defense framework by | N/A DDoS Survival rate, average
combining MTD and cyber deception packet loss rate
to create fake information to confuse
attackers
[16] Use of diverse Operating Systems to | Simulated Unknown Detection rate, False
create a host-based intrusion detection | SCADA threats Positive rate, system
model for SCADA systems environment overhead
[10] Utilizing game theory to optimally allo- | Node Tree Game Model Deception rate, detec-
cate and diversify honeypots to deceive tion rate, cost per hon-
attackers by considering the network eypot type
topology as well and importance of the
nodes
Our An SDN-Enabled defense framework by | Smart hospital Reconaissance, Attack cost, System
combining OS-based MTD and cyber data risk, ROA, PDR
deception to create fake information to exfilteration
confuse attackers

Stage 1. The User provides relevant system information, such as initial network topology and node vulnerability data, to
the IoT Generator in order to create the IoT network architecture. The output is then passed to the Diversity Deployment
Module.

Stage 2. In this stage, the initial deployment of the decoy-based IoT network associated with the real IoT network is
developed. Initially, it is proposed to deploy one decoy node for each of the real nodes, in the VLANSs. Table 3 shows
the different types of the nodes used in the network. We consider four attribute categories: a node is either real (n;.r=0)
or a decoy (n;.d=1), compromised or not, critical with essential information or not with range 0 and 1 respectively.

Stage 3. The Diversity Deployment Module generates the (real and decoy based) IoT network. The IoT network changes
the OSs for the nodes as per proposed technique along with updating vulnerability information in random and IMs-
based OS-diversity fashions. In the case of random diversity, the Diversity Deployment Module applies OS-diversity
on randomly selected nodes based on a percentage of all nodes and in the case of IMs-based OS-diversity, the Diversity
Deployment Module selects critical nodes first and then applies OS-diversity and feeds the IoT network with an updated
OS and passes their vulnerabilities to the Security Model Generator for further processing.
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Figure 1: The Proposed Framework

Stage 4. The Security Model Generator automatically generates a HARM value based on both the initial IoT network
and the updated OS, which depicts all of the attack paths. Our HARM model comprises two layers. The upper layer
represents the reachability information, while the lower layer represents the vulnerability information of each node.

Stage 5. The Evaluator uses the HARM model output, which is a graphical security model to calculate the results for
the given evaluation metrics.

3.3. System Model
In this section we describe our system model including the network model, attack model, and defense model in an IoT
environment.

Network Model. In Stage 1, the network model having details about network architecture, components, and
infrastructure in the SDN-based IoT environment is used to create an IoT network. In this paper, we consider a smart
hospital as the sample IoT network, containing N real nodes composed of servers and IoT nodes. The IoT nodes collect
data and transmit it periodically to servers through one or multiple hops. The path from an IoT node to a server node is
a sequence of nodes, consisting of intermediate nodes. In the network, IoT nodes of distinct functions and servers are
situated across various VLANSs. The study assumes that SDN technology [27, 22]is utilized to manage and regulate
traffic flows effectively among the nodes. The IoT network used an SDN controller located on a remote server, which
interacts with SDN enabled switches and manages the traffic flows between the IoT nodes and servers connected to
switches through communication channels such as cables or wireless signals. In this paper, we use the network model
of a Smart hospital but as medical devices are expensive it is not yet realistic to apply diversity to all medical IoT
devices. For that reason, in this work, we assume that all the devices are compatible with OS diversity.

Table 3
Node Types
Node Type Attributes | Value Range
Real Node n,.r 0,1
Decoy Node n,.d 0,1
Compromised Node n;.c 0,1
Critical Node n,.r 0,1

Table 3 presents the node types and the attributes used in the proposed model. We consider four attribute categories: a
node is either real or a decoy, compromised or not, critical with essential information or not and a list of vulnerabilities
is attached to each node.

Attacker Model. In order to compute attack paths using a Security Model Generator in Stage 4, we provide the attack
model as an input. The attack model typically includes information about potential vulnerabilities, threats, and attack
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vectors that could be exploited by an attacker. The attack model is presented in Table 4. To describe attackers, we have
made assumptions about their behaviors including:

o Attackers have limited knowledge about decoy nodes, which are fake nodes designed to mimic real nodes. The
attacker’s ability to detect decoys depends on the difference between the deployed decoys and the real nodes. We
measure the attacker’s capabilities in detecting decoys by how often they interact with the decoy node.

e Attackers will terminate interactions with decoys immediately if they realize their existence has been detected
and they will try to find new targets to attack.

e The attacker’s ultimate goal is to leak confidential information to unauthorized entities outside the IoT network
by compromising servers.

e Attackers can identify unpatched vulnerabilities and exploit them using scanning and exploitation tools.

o Attackers are unlikely to compromise servers directly and will instead use vulnerable IoT nodes as entry points to
move laterally within the network and eventually compromise servers. Servers are typically better protected with
multiple security measures such as firewalls, intrusion detection systems, and regular security updates, under
the defense in depth strategy. It can be more challenging for attackers to gain direct access to a well-protected
server. Compromising a server directly may trigger immediate alerts and security measures, making it riskier
for the attackers to remain undetected. IoT devices often have weaker security protection mechanisms and more
vulnerabilities for exploitation. Attackers may prefer compromising these devices to find their way to the servers.
Attackers often seek to maintain their anonymity. Using a compromised IoT node as an intermediate step can
help obscure their identity and location.

e The SDN controller [29] is well-protected, and traffic between the controller and the SDN-enabled switches is
secure.

Table 4
Attacker Model

Attack types Details
Reconnaissance attacks | Attackers perform scans (i.e., packet sniffing, port scanning) to identify vulnerable targets
and gain access to the network, compromising system integrity.
Data exfiltration attacks | Attackers performed unauthorized copying, transfer, or retrieval of data from servers or
individual computers. These attacks pose a considerable threat to network with valuable
data, regardless of whether the perpetrator is an external threat actor or a trusted insider.

Defense Model. In the context of a security analysis framework, the diversity module in Stage 3 typically aims to
incorporate diversity into the defense model. The defense model represents the security measures and countermeasures
implemented to protect the network against potential attacks. The primary objective of the defender system is to
defensively deceive attackers by setting up a decoy nodes that is distinct from the IoT network, with the intention
of enticing the attackers to engage with the decoy nodes. The purpose is to capture and analyse malicious behavior
and reveal attackers’ intentions. Legitimate users are unaware of the decoy system, and alerts are generated for the
defender when an attacker intrudes into the decoy system. In this paper, we consider two types of decoys for IoT
networks: emulation-based and full OS-based. Both can be independently created to fit into the existing infrastructure.
A combination of various decoys with different interactive capabilities can increase the chances of attackers connecting
them. The intelligence centre performs tasks such as creating, deploying, and updating the decoy system, providing
automated attack analysis, and integrating the decoy system with other prevention systems. To monitor outgoing traffic
and mislead attackers, the intelligence centre connects to specific ports (SPAN and Trunk port for in and out traffic).
The design parameter P, indicates the probability of an attacker interacting with an individual decoy node.

OS change is the process in which backup OS is used instead of default OS on each node in the network. We have
used OS diversification as the MTD technique in the proposed framework. We assume that the possibility of failure in
launching a new OS is insignificant. OS diversification makes the network more complicated for the attackers as every
time a new OS is launched it presents a new set of vulnerabilities for the attacker to research and exploit. Alternatives
to OS diversification include adjusting the applications and services running on the nodes, as well as adopting different
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programming languages. Nevertheless, in this paper, we restrict our focus to OS diversification as a means of achieving
diversity. The combination of cyber deception and MTD alters the attack surface of the IoT network that consists of
real and fake nodes.

Additionally, some researchers have presented MTD algorithms that apply continuous modifications to a targeted
system, without taking into account the existence of threats or identifying potential attack points and risk indicators
within the system. As a result, this approach can cause excessive power consumption and increase service downtime
in the network, leading to delays and higher service costs for both users and providers. In our approach, we consider
the OS diversity as a proactive approach to minimize the possibility of service downtime.

Security Conditions. In Stage 5 of the proposed framework, security conditions are utilized to evaluate the security
posture of the system and determine whether it meets the desired security objectives. These conditions serve as criteria
or requirements that the system must satisfy in order to be considered secure. Security conditions used in Stage 5
include:

e Loss of integrity: if the attackers can compromise a specific number (i.e., one third) of legitimate nodes via
reconnaissance or other attacks.

e Loss of data confidentiality: if the confidential information is leaked to unauthorized entities by inside or outsider
attackers through data exfiltration attacks.

4. Proposed Defense Mechanisms

In this section, we describe the proposed defense mechanisms to deploy decoy nodes in the real network and to apply
diversity on both real and decoy nodes to achieve our goals, and also describe the metrics used in our research.

4.1. Decoy Deployment

In Stage 2 of our proposed framework, we identify the initial deployment of the IoT network with real and decoy
devices and servers. The network consists of multiple VLANS as shown in Figure 2, initially we deploy decoy nodes
for the real IoT devices in each of the VLANs. We increased the number of decoys with different types of real nodes
in each VLAN to enhance deception. To understand the attacker’s intentions, at least one decoy server was deployed
to capture the attacker’s interaction with the network. After deployment of decoy nodes in the VLANS, we establish
connections between real IoT nodes and decoy nodes; and redirect the traffic from real to decoy nodes and use a script
to generate simulated traffic and place fake credentials on real IoT nodes to redirect attackers towards the decoy nodes.
The traffic flows from real nodes to decoy nodes or from decoy node to decoy node are managed by an SDN controller
that updates the flow tables in the SDN-enabled switches. In our study, flows are not allowed from decoy nodes to real
nodes, as the sole purpose of decoy nodes is to divert attackers from the actual system. Once an attacker is trapped
into the decoy system, they will be further redirected to other decoys within the system. The behaviour of the attacker
is continuously monitored by the intelligence centre. If an attacker identifies a decoy node, they will likely terminate
their interaction with the decoy node and search for a new target.

Decoy capabilities: Our decoy network has following features and capabilities:

e One-Way Connection: The decoy network has a one-way connection with real IoT nodes. In such a configuration,
fake traffic can be directed from real IoT nodes to decoy nodes to lure the attackers into the decoy network. Once
attackers are lured into the decoy network, then they can move laterally within the decoy network and cannot
access the real network. This design choice prevents the real IoT nodes from being compromised by the potential
attackers utilizing decoy nodes.

e Data Collection and Transmission: The decoy network can be equipped to collect data from potential attackers.
This data could include information about the attack traffic (e.g., the IP address of attack packets), attackers’
activities (e.g., stealing log file data, device configuration files), and tactics. The collected data is then transmitted
to an intelligence center for further analysis. This capability is essential for understanding and monitoring
potential threats to the network.

e Interaction Capability: The decoy network is designed to be heterogeneous that resembles the real network.
Some decoys are emulated software to mimic IoT devices, while others are full OS-based and highly interactive,
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potentially simulating workstations or other devices. This design approach accounts for the diversity of devices
on the network, making it more realistic and challenging for attackers to identify and exploit vulnerabilities
across the entire network.

Deployment steps:

1. Decoy System Creation and Deployment:

e Deception Platform: deploy a comprehensive deception platform (e.g., Attivo Networks Threat Defend
platform) to create and manage decoys. The deception platform may offer centralized control for ease of
management. Decoys are virtualized systems that offer different levels of interaction capabilities. Ensure
that the intelligence center has access to the trunk port of the core switch in each VLAN. This allows
defenders to mislead attackers into believing that decoys are present on those VLANS, providing a more
comprehensive deception strategy.

e Decoy Distribution: Deploy decoys across various network segments like Zscaler [77], including VLANS,
to maximize their coverage and effectiveness.

e Decoy Updates: Regularly update the decoys to maintain their realism and stay ahead of attackers’ tactics.

2. Automated Attack Analysis, Vulnerability Assessment, and Forensic Reporting:

e Implement automated analysis tools to monitor and analyze incoming and outgoing traffic to detect
potential threats and attacks.

e Conduct vulnerability assessments to identify weaknesses in the network that attackers might exploit.

e Generate forensic reports to understand the nature of the attacks, their origins, and the impact on your
network.

3. Integration with Other Prevention Systems:
o Connect the intelligence center to your existing security infrastructure, including
— Security Incident and Event Management (SIEM): Integrate with a SIEM system to correlate and
analyze data from the decoy system, allowing more comprehensive threat detection and response.
— Firewalls and Intrusion Detection/Prevention Systems: Configure rules and policies to block the
attackers or malicious traffic based on intelligence from the decoy system.
4. Monitoring Network Traffic:

e Connect to the SPAN (Switched Port Analyzer) or TAP (Test Access Point) port at the Internet egress
point to monitor outgoing traffic. This is crucial for identifying malicious activities or data exfiltration by
malware.

5. Security Policy Updates:

e Continuously update and adapt security policies based on the intelligence gathered from the decoy system
and automated analysis. This may involve altering firewall rules, blocking malicious IPs, and implementing
new security measures.

6. Response Strategy:

e Develop a strategy for responding to detected threats. Depending on the severity and nature of the attacks,

actions may range from segmentation of the network to threat intelligence sharing.

Purpose of decoy: When an attacker initiates interactions with a decoy, it triggers an alert to the defenders. But in the
meanwhile, the security system permits further engagement with additional decoy nodes to uncover the true intentions
and assess the behaviors of the attackers. As for the decoy target node, it’s worth noting that the decoy network closely
mirrors the actual network environment. Consequently, the decoy target node is frequently a decoy server strategically
positioned within a decoy network subnet, having a high capacity for interaction with potential attackers.

4.2. Deployment of OS Diversity

Changing OS on each node (either real or decoy) by applying OS diversity is proposed to increase the network
complexity. When we run different operating systems for the node, the kernel and applications on the operating system
will also change. Exploitable vulnerabilities can exist in the operating system, kernel or applications. We use the term
OS diversity to describe our approach as we change the operating system for the node, which implicitly implies the
change of kernel and applications. The reason is that a persistent attacker may discover the network design. Diversity
in network architecture, configurations, and defense can add to the operational cost incurred by the network operator
but results in enhancing network security. By deploying a diverse set of technologies, protocols, and configurations
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across the network, an attacker’s task becomes more challenging as they would need to have a wide range of tools
and techniques to exploit potential vulnerabilities. One example of diversity in network security is through the use
of decoys, which are designed to lure attackers. By deploying different types of decoys with various vulnerabilities,
configurations, and behaviours, an attacker could be misled thus wasting their time and resources trying to exploit
decoy vulnerabilities. This diversionary tactic can buy time for network admins to detect and respond to the attacks.

Furthermore, diversity in network security can also prevent a single point of failure. If all systems and configurations
are homogeneous, a single vulnerability or misconfiguration could potentially expose the entire network to an attack.
However, by diversifying the network, such as by using different OS, firewalls, and security solutions, an attacker’s
attempt to exploit a single vulnerability may be limited to a specific segment of the network, reducing the overall impact
of the attack. Changes to the traffic flows in an updated system, can impact the regular transmission of data from IoT
nodes to servers for service delivery. This can result in increased energy consumption by IoT nodes to accommodate
the additional traffic flows, potentially leading to delays in sending packets to the server. We utilize Packet Delivery
Ratio (PDR) as a metric to measure the availability of the service.

Our work entails three strategies (zero, random, IMs) aimed at addressing the implementation of OS Diversity, with
the primary goal of increasing the likelihood of attackers targeting decoy nodes. This approach effectively deters or
prevents security attacks on real nodes. To reach a target node, attackers typically exploit a node, as an entry point and
then compromise other nodes to ultimately reach the target. Attackers may discover multiple attack paths through one
or more entry points, which are sequences of nodes that can be compromised to reach the target node. In our approach,
we define two sets of attack paths, namely AP, and AP;. AP, represents attack paths with real nodes as targets, while
APy, denotes attack paths with decoy nodes as targets. A P, exclusively includes real nodes, whereas A P; encompasses
both real and decoy nodes. For instance, if an attacker identifies a real node as the entry point and compromises other
real nodes until reaching a real target node, this is categorized as an attack path in A P.. However, the attacker may be
redirected to a decoy node within the decoy system. Once the attacker falls into the trap of the decoy system, the attacker
may be further redirected to other decoy nodes within the system. If the attacker successfully reaches a decoy target
node, then this is counted as an attack path in A P;. However, if the attacker identifies the decoy node and terminates its
interaction, it is not considered an attack path, as the attacker does not reach the decoy target node. Decoy nodes may
be regularly reconfigured if deemed as compromised by the network intelligence center. In such cases, the attacker will
not be able to recognize the previously visited decoy node during subsequent attacks. We consider three strategies in
this paper:

Zero OS Diversity. This is the initial deployment of the real and decoy network and their connections, and the
calculation of the security and performance metrics without any MTD technique applied.

Random OS Diversity. Applying random OS diversity on the nodes involves the implementation of a diverse range
of OS across different computing nodes within a network. By randomly deploying different OS, organizations can
enhance infrastructure security and resilience. This approach mitigates the risks of widespread attacks and reducing
the chance of exploiting only a specific vulnerability in a single OS. Random OS diversity ensures that even if one
OS is compromised, others remain intact, thereby reducing the overall impact of potential security breaches, and the
calculation of the performance metrics to determine its effectiveness.

IMs-Based OS Diversity. To investigate scalability issues when conducting security analysis with the use of GSM,
particularly when using an Evolutionary Strategy (ES) to find the optimal solution; we leverage significant Network
Centrality Measures (NCM), such as Closeness, to identify the most critical nodes in the network and apply MTD
techniques (OS diversity) to these nodes only, without resorting to ES. NCMs aid in identifying important nodes in
the HARM model. The formula for computing Closeness centrality, as shown in Equation 1, involves determining the
shortest distance between nodes n; and n; (in our work we assume number of hops rather than the number of edges),
where g represents the total number of nodes in a closed graph with no disjoint components. Overall, NCMs should
identify the most critical nodes in the network and apply MTD techniques to essential nodes as an alternative to ES
to improve scalability and to examine how the diversity impacts the network’s security and performance in the GSM
analysis. In this work, we identify the five most important nodes and apply OS diversity on the five nodes.
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4.3. Metrics

Our objective is to assess the effectiveness of proactive defense mechanisms by evaluating their impact on security,
performance, and service availability. Specifically, we analyze the extent to which diversion from the real system
to decoy targets can deter and mislead attackers, which can be quantified by measuring the number of attack paths
towards decoy targets that result in decoys being compromised. We will also investigate how MTD techniques affect the
lifespan of the system, based on security failure conditions, and the delivery of services and potential packet dropping.
Additionally, we evaluate the efforts of an attacker to attack a network and calculate system risk and the cost associated
with MTD operations.

Number of attack paths toward decoy targets. This metric quantifies the extent to which deception tactics are used
to redirect or mislead an attacker away from the real system with the use of |AP;| to sum up attack paths toward the
decoy targets.

Mean Time To Compromise (MTTC). This measure quantifies the duration it takes for an attacker to exploit a series
of vulnerabilities or weaknesses in different parts of a network, with the ultimate goal of compromising the entire
system. MTTC is calculated using Equation 2.

MTTC =)' S, / P(0)dt ()
ies =0

where S refers to a set of network states and .S; is “1”’; when in state i the network does not reach the given level. P,(¢)
is the probability of the system being in state i at time ¢.

Packet Delivery Ratio. PDR is based on the concept of attack paths AP,, which are routes that attackers may take
to compromise nodes within the network. The diversity of OS on these nodes can affect the success of such attacks.
When a node along an attack path is compromised, the attacker may drop or change packets that pass through the
node. However, the attacker may choose not to drop or change packets to avoid detection by an Intrusion Detection
System (IDS). The metric calculates the PDR for attack paths, which is the ratio of attack paths that can successfully
deliver packets to all of the attack paths |AP,|. In other words, it measures the proportion of attack paths that are able
to deliver packets without being affected by packet loss caused by the attacks. The PDR is calculated at each operation,
and the mean PDR is calculated over all of the operations until the system reaches one of the predefined security
conditions. The focus of this metric is to analyze the impact of attacks on service availability, specifically in terms of
packet loss caused by attacks. It assumes that packet losses due to collisions or errors will be handled by data link layer
and network layer protocols, and therefore will not affect the service availability represented by the PDR metric. This
metric helps assess the resilience of the system against attacks that may result in packet loss and potentially disrupt
service availability. By monitoring and analyzing the PDR for attack paths, organizations can gain insights into the
effectiveness of their security measures in mitigating such attacks and maintaining service availability in the face of
potential disruptions.

System Risk. The System Risk determines the overall risk of a network by assessing the vulnerabilities present in
each VM and is measured at both HARM layers. The construction of the HARM for the network was based on the
vulnerabilities listed in Table 5 & 6. The probability of a successful attack on a specific node is represented as P,,
while the impact of the attack, if successful, is represented as I,,. The risk value of a node is calculated using Equation
3, the risk value for an attack path can be computed using Equation 4. Finally, the overall risk value of the system can
be calculated using Equation 5. In this work, we assume that system risk is the maximum risk value of all attack paths.

Risk, = P, x I, 3)

Zubaida et al.: Preprint submitted to Elsevier Page 13 of 23



Proactive Defense Mechanism: Enhancing loT Security

Risk,,= Y R, )
n;€ap
SystemRisk = Z R, 5)
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Attack Cost. The cost associated with exploiting vulnerabilities on a node by an attacker is referred to as the AC and
can be used to calculate the overall AC of a system using Equation 8. The upper HARM layer can be used to determine
the overall network AC. Table 5 and Table 6 provide the costs associated with exploiting a node through vulnerabilities
AC,,. The overall AC value of a networked system can be calculated using Equation 8.

AC,; = 10 — (Basescore,;) 6)
AC, = ) AC, ™)
n;€ap
SystemAC = ) AC,, ®)
n;€ap

Return On Attack. ROA shows the readiness of the attacker to use the same nodes, attack paths, and vulnerabilities to
penetrate the network. The higher the ROA value, the higher the probability the attacker will exploit the vulnerabilities.
The ROA is defined as the ratio of the network risk and the AC, as shown in Equation 9. The value of the total ROA
on a single node is the sum of all the ROAs deployed on the same host or passing through the same attack path.

ROA; = (E,; = 1,;))]AC,; )

Extra Operational Cost. The EOC refers to the additional cost that attackers would need to bear in order to successfully
exploit the same nodes and vulnerabilities along the attack path to breach a network. It quantifies the increased effort,
resources, or cost required by the attackers to achieve their objectives. The EOC metric helps to assess the effectiveness
of the network’s defensive measures by evaluating the impact they have on increasing the cost and difficulty for the
attackers. A higher EOC indicates that the network’s security measures are effective in raising the barriers for attackers
and making their exploitation attempts more costly. Equation 10 shows the extra cost requires by the attackers to exploit
the same nodes, and vulnerabilities on the attack path to penetrate the network.

EOC,, = AC,, — AC,; (10)
SystemEOC = ) EOC,, (11
n;€ap

Benefit Cost Ratio (BCR). The BCR in an IoT network with the use of system risk is a financial metric that takes
into account the potential benefits and costs of implementing IoT solutions while considering the associated risks. In
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the evaluation of BCR, the benefits and costs should be analyzed in the context of the associated system risks. This
involves quantifying the potential impact of system risks on the benefits and costs and adjusting them accordingly.
For instance, the costs may include investments in robust security measures and risk mitigation strategies to minimize
the impact of cybersecurity threats. In our case, we calculate the BCR value using Equation 12, which is the average
system risk divided by the average AC.

BCR = Avg.SR/Avg.AC (12)

S. Simulation and Analysis

In this section, we discuss our simulation design and implementation details along with the simulation outcomes.
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Figure 2: loT Network Model

5.1. Simulation Setup

The IoT network shown in Figure 2 simulates a smart hospital scenario but as discussed before, we assume that all of
the medical devices are compatible with OS diversity [51], consisting of four VLANs with specific devices in each
VLAN as shown in Table 5. VLANI represents the medical examination room and includes an MRI and a CT Scan
machine as IoT devices. VLAN?2 represents medical care unit and contains a smart thermostat, a smart meter, and a
smart camera, which are equipped with microprocessors, i.e., ARM and have varying memory and storage capacities.
For example, a smart meter has limited memory and storage, while a thermostat or a camera can have higher capacities.
Smart medical devices like MRI and CT Scan machines have increased capabilities with enhanced CPUs and larger
storage capacities. VLAN3 represents staff offices with a smart TV and a laptop, while VLAN4 represents the server
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room that contains a server. The VLAN?2 is connected to VLAN3 as all of the devices in VLAN?2 transmit data (control
sensors and video images) to the smart TV and laptop. Initially, VLAN4 is connected to the other three VLANS to
enable IoT devices to send information to the server for further processing. Similarly, VLAN?2 is connected to VLAN3
to facilitate communication between laptop applications, smart sensors, and the smart camera. The IoT network is
configured using SDN-enabled switches for efficient network management and dynamic reconfiguration of connections
between different VLANSs and devices. This smart hospital scenario highlights the utilization of IoT devices in different
VLAN:S for diverse healthcare applications, such as medical examinations, patient monitoring, and office operations.

HARM [31] is utilized in this research to assess the security posture of an IoT network with multiple vulnerabilities.
HARM employs a graphical representation, using AND gates to capture the exploitation of multiple vulnerabilities and
OR gates to capture the exploitation of any of the vulnerabilities, in order to represent the network node vulnerability
information. The vulnerabilities used in this research are sourced from publicly disclosed vulnerabilities in real-world
devices, as documented in the Common Vulnerabilities and Exposures (CVE) and National Vulnerability Database
(NVD) [53]. It is assumed that the IoT network nodes have at least one vulnerability that could potentially be exploited
by an attacker to gain root privilege. However, the HARM model allows for the inclusion of additional vulnerabilities
for network nodes, and the gates in HARM can be combined to capture the complex relationship among vulnerabilities.

Table 5

Real Network with Vulnerability information
Real Node VLAN CVE ID Affected OS/Vendor/Component | BS I E CR | AC
MRI VLAN1 | CVE-2018-8308 Win10 6.6 | 5.9 | 0.7 | 0.006 | 3.4
CT Scan VLAN1 | CVE-2018-8308 Win10 6.6 | 5.9 | 0.7 | 0.006 | 3.4
Smart Thermostat | VLAN2 | CVE-2018-11315 CT80 6.5 | 3.6 | 2.8 | 0.006 | 3.5
Smart Meter VLAN2 | CVE-2017-9944 Siemens 7TKT 9.8 | 5.9 | 39 | 0.042 | 0.2
Smart Camera VLAN2 | CVE-2018-10660 Axis IP 98 | 5.9 | 3.9 | 0.042 | 0.2
Smart TV VLAN3 CVE-2018-4094 Mac TvOS 78 | 59 | 1.8 | 0.012 | 2.2
Laptop VLAN3 | CVE-2018-8345 Win10 75|59 |16 | 0012 | 25
Server VLAN4 CVE-2018-8273 SQL Server 98 | 5.9 | 3.9 | 0.042 | 0.2

The vulnerability information for real network devices and decoy network devices are presented in Table 5 and Table
6 respectively with detailed information about CVE ID and their severity level, i.e., Base Score. In addition, we have
considered the likelihood of each vulnerability being exploited by an attacker to gain root privileges, which is expressed
as the compromise rate per unit of time, such as per hour. The mean vulnerability exploitation time is estimated using
the base score metric from the CVSS, and its inverse is used to calculate the compromise rate. The compromise rate is
mentioned in the Table 7 which is dependent on the severity level of the vulnerabilities. Using this compromise rate,
we calculate the MTTC using the HARM model. In our simulation, we assume that a compromised node may attempt
to disrupt service availability by dropping or corrupting the packets, with corresponding probabilities of Pd and Pma,
respectively. However, in practice, detecting such attacks may be difficult for network IDS, as a compromised node
may not always drop or manipulate packets that pass through it. We deploy one decoy node against each real device
in the corresponding VLAN with three sets of backup OS in which each OS has multiple vulnerabilities. The attacker
could exploit any of the vulnerabilities to get root privileges for the node.

Table 8 presents the model notations, their definitions, and default values that we utilized in our experiments. We
employed identical weights for w/ and w2, although their values can be altered depending on the significance of a
particular component. Our baseline scenario involves a moderate level attack from a less persistent attacker. To exploit
vulnerabilities, we used the HARM model, which calculates possible attack routes. In each simulation, the attacker
randomly selects an entry point from an attack path and penetrates nodes along the route according to the attacker
model’s behaviors until one of the security criteria is met. To determine the attacker’s behaviour when compromising
a node, we verified the privilege level of the vulnerability and also checked if the attacker had a higher privilege level
than required, the mean vulnerability exploitation time was added to MTTC. Once the intelligence centre detected the
attacker’s interaction with the decoy target, decoy nodes were eliminated from the system, and subsequent actions by
the attacker would not recognize the same decoy node. In each simulation, decoy nodes were cleared by marking only
the compromised real nodes as compromised in the attack paths. The nodes may be randomly selected using the RD
strategy during an attack on a node. We assumed that lost connections would force the attacker to exit the network
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Table 6
Decoy Network with Vulnerability information
Decoy Node CVE ID Affected OS/Vendor | BS | E CR | AC
CVE-2019-11671 Philips 41|36 | 05| 0.004 | 59
CVE-2018-14789 6.7 | 59 | 0.8 | 0.006 | 3.3
CVE-2018-4834 . 9.8 |59 |39 0.042 | 0.2
MRI/CT Scan CVE-2016-5566 Siemens 53 | 1.4 | 39 | 0.004 | 47
CVE-2020-14886 GE Healthcare 6.0 | 40 | 1.5 | 0.006 | 4.0
CVE-2019-10964 88 59|28 | 0012 | 1.2
CVE-2019-20496 Siemens 55| 36| 1.8 | 0.006 | 45
CVE-2021-21541 6.1 | 27 | 2.8 | 0.006 | 3.9
CVE-2018-12889 9.8 |59 |39 0.042 | 0.2
Smart Thermostat/Smart Meter CVE2017-7659 Honeywell Inc =t 136 139 0010 | 25
CVE-2017-9605 Johnson Control 55 [ 36 | 1.8 | 0.012 | 45
CVE-2019-15735 55 [ 3.6 | 1.8 | 0.012 | 45
CVE-2020-27403 TCL 65| 3.6 | 2.8 | 0.006 | 3.5
CVE-2020-28055 78 |59 |18 | 0.012 | 2.2
CVE-2018-4094 78 |59 (18] 001222
Smart Camera/Smart TV CVE-2018-4095 Apple Inc 78 [ 59 | 1.8 | 0012 | 2.2
CVE-2022-44636 Samsung 46 | 25| 21 | 0.004 | 5.4
CVE-2015-5729 9.8 |59 |39 0.042 | 0.2
CVE-2017-8530 Win 10 54 | 25 | 28 | 0.004 | 4.6
CVE-2017-8490 5.0 | 36 | 1.3 | 0.004 | 5.0
Laptop/Server CVE-2018-14633 Linux 7.0 | 47 | 22| 0.012 | 3.0
CVE-2017-15126 81|59 |22 0.012 19
CVE-2021-20254 Redhat 6.8 | 52 | 1.6 | 0.006 | 3.2
CVE-2021-29921 9.8 |59 |39 | 0.042 | 0.2
Table 7
Vulnerability compromise rate according to severity
level
Severity Level | Base Score | Compromise Rate (hour) MTTC
Low 0.1-5.4 Once per 10 days 1/240 = 0.004
Medium 5.5-6.9 Once per week 1/168 = 0.006
High 7.0-8.9 Twice per week 1/84 = 0.012
Critical 9.0-10 Once per day 1/24 = 0.042
Table 8
Parameters and their description
Parameter Description Value
wl A weight to consider the security vulnerability associated with failure condition 1 0.5
w2 A weight to consider the security vulnerability associated with failure condition 2 0.5
P Interaction probability of an attacker with an emulated decoy 0.9
Py Interaction probability of an attacker with an OS-based decoy 1.0
P! Probability of a packet to be dropped 0.5
P Probability of a packet to be manipulated 0.5

and attempt other intrusion methods. After diversification, the attacker is still able to recognize nodes that they have
previously compromised and resume their attack on those nodes in subsequent attacks. To simulate different network
diversification scenarios, a new HARM model is used to compute potential attack paths for each newly diversified
network. The HARM model allows for the identification of potential attack paths that an attacker may take and helps
to identify vulnerabilities that need to be addressed to increase network security.
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During the simulations, various metric values were collected to assess the network’s security performance. The metrics
included the AC, the SR, ROA, EOC, and the PDR. To ensure statistical significance, the simulation was run 100 times
with different random seeds. After completing the 100 simulations, the metric means were calculated for performance
analysis. The simulation results were collected using Python and a computer equipped with an 11th Generation Intel(R)
Core(TM) 15-1145G7 @ 2.60GHz 2.61 GHz and 8GB RAM.

5.2. Result Analysis

In this section, we present a comparative analysis of the simulation results by applying the proposed model and metrics
to evaluate different use cases. For each metric value, we deploy one decoy node in each VLAN and calculate the metric
values without applying the Diversity-based MTD technique, which is called our baseline scenario i.e., Zero-Diversity
strategy. In a second scenario, i.e., Random Diversity Strategy, we consider scenarios based on node selection by
percentage (i.e., 30%, 50%, 70%, 100%). For each use case, we select nodes randomly according to percentage from
the real and decoy nodes and apply diversity and calculate the metric values. In a third Scenario, which is our optimal
strategy, we used IMs [36], i.e., Closeness, to find the optimal solution.

The selection of nodes is provided in Figure 3. The figure shows the number of nodes selected in each scenario; a
percentage for random approaches and the highest critical value, i.e. five, for the IMs.
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Figure 3: Selection of Nodes

The ROA metric results are provided in Figure 4a. ROA is used to measure the effectiveness of a cybersecurity defense
strategy and the results show that a 50% random selection strategy result in a higher ROA value, i.e., higher probability
for attacker to exploit vulnerabilities than an IMs-based strategy since the latter relies on a fixed number of nodes,
which are critical and cannot be easily targeted by an attacker. However, it’s interesting to note that the 100% diversity
strategy shows the lowest ROA value. This may indicate that although OS-diversity can be effective in preventing
attacks, it may not always be the best approach to achieve high ROA for specific networks.

The analysis of the average AC, provided in 4b, shows that OS-diversity can increase the cost of exploiting
vulnerabilities on a node by an attacker. This is because the use of different OS with a different set of vulnerabilities on
different nodes in the network creates more complexity, making it more difficult for attackers to successfully exploit
vulnerabilities. As shown in Figure 4b, the use of OS-diversity on all nodes, both decoy and real devices, gives the
highest AC, indicating the highest level of security. However, this approach may come with a higher implementation
cost due to the need for a diverse set of OS across all nodes. In contrast, using OS-diversity on critical nodes only, as in
the IMs scenario, gives slightly lower AC values, but with a lower implementation cost compared to random selection.
This approach focuses on using OS-diversity on the most critical nodes in the network, which can significantly improve
the security of the network at a lower cost.

Random OS-diversity can lead to higher system risk values compared to the IMs-based approach, as shown in Figure
5a. This is because random OS-diversity may not necessarily focus on critical nodes in the network, leading to a
higher risk of system failure or security breaches. However, it’s important to note that the selection of the OS-diversity
approach depends on various factors, including the cost of implementation, the criticality of nodes, and the overall
security goals of the network. While the IMs-based approach may provide better security, it may come with a higher
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Figure 4: Attack Cost Analysis

implementation cost, and it may not be feasible for networks with a large number of nodes. The benefit-cost ratio,as
shown in Figure 5b, is related to benefit cost ratio. In a network with OS-diversity, BCR should be calculated to check
the feasibility of the network in the context of associated system risk; which is better in IMs-based scenario and slightly
lower in random based scenario.
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Figure 5: System Risk Analysis

Figure 6b shows the average PDR (service availability). In a network with OS-diversity, the PDR tends to be higher
compared to a network where shuffling [30] is used. This is because OS-diversity produces a smaller number of attack
paths towards decoy targets than shuffling as mentioned in Table 9. As a result, the attacker has a smaller chance to drop
or manipulate packets passing through the attack paths, which leads to a higher PDR and better service availability. As
in an OS-diversified network, different types of operating systems are used for various nodes within the network. This
diversity results in a variety of configurations and software implementations across the network. Our studies suggest
that this diversity makes it difficult for an attacker to exploit a vulnerability consistently across the entire network. As
a result, it becomes challenging for an attacker to successfully launch an attack. This increased difficulty in launching
successful attacks means that the Packet Delivery Ratio (PDR) tends to be higher in OS-diverse networks. A higher
PDR indicates better service availability, as network packets are less likely to be dropped or manipulated by attackers.

In contrast, when the network employs a shuffling approach [30], nodes randomly change their positions within the
network. The shuffling can create new paths or configurations within the network. This implies that these changes may
also introduce new attack paths that an attacker can potentially exploit. The uncertainty of node positions can lead to a
lower PDR compared to an OS-diverse network, as it might be easier for attackers to identify and target vulnerabilities
in the shuffled network.
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Table 9
PDR Comparison

Technique PDR Ratio
[30] 0.8
OS Diversity 0.9

Figure 6a shows the EOC metric result, a measure of the additional cost or effort required for an attacker to successfully
exploit vulnerabilities in a system that is protected by an OS-diversity defense strategy. According to Figure 6a, it
appears that the IMs-based OS-diversity strategy outperformed the other random-based scenarios in terms of the
EOC metric. This suggests that this strategy is more effective at raising the cost and effort required for attackers to
successfully exploit vulnerabilities. Deploying OS-diversity can make it more difficult and costly for attackers to mount
successful attacks against a network. This is because an attacker who is familiar with one type of operating system will
need to learn how to exploit the vulnerabilities of a different type of OS, which requires additional time and effort
on their part. However, it’s important to note that while OS-diversity may increase the AC for an attacker, it does not
necessarily change the overall system Risk.
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Figure 6: EOC and Service Availability Analysis

6. Conclusion

We have proposed a proactive defense framework that enables the optimal deployment of proactive defense in an
SDN-based IoT environment. Our approach has leveraged the SDN architecture to facilitate flexible deployment and
easy integration of defense mechanisms. By employing MTD techniques and cyber deception, we have established
defense mechanisms that mislead the attackers, causing them to make incorrect decisions and deplete their resources
with minimal impact on resources. We have introduced a diversity-based defense model to increase the attackers’
efforts and costs. Additionally, we have presented strategy for selecting critical nodes, striking a balance between
effectiveness and cost to optimise defense implementation. Evaluation results have demonstrated that our proposed
method effectively mitigates attacks with lower implementation costs, while maintaining service availability in IoT
networks. In our future work, we will focus on incorporating more security mechanisms in a flexible manner for
real-world applications, performing scalability analysis for the proposed approach, and exploring proactive adaptation
techniques to differentiate between malicious attackers from legitimate users. Through extensive experimentation, we
aim to validate the effectiveness of our approach in mitigating attacks while ensuring high-performance levels in IoT
networks.
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